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Abstract—Multibody structure-and-motion (MSaM) is the problem to establish the multiple-view geometry of several views of a 3D scene

taken at different times, where the scene consists of multiple rigid objects moving relative to each other. We examine the case of two views.

The setting is the following: Given are a set of corresponding image points in two images, which originate from an unknown number of

moving scene objects, each giving rise to a motion model. Furthermore, the measurement noise is unknown, and there are a number of

gross errors, which are outliers to all models. The task is to find an optimal set of motion models for the measurements. It is solved through

Monte-Carlo sampling, careful statistical analysis of the sampled set of motion models, and simultaneous selection of multiple motion

models to best explain the measurements. The framework is not restricted to any particular model selection mechanism because it is

developed from a Bayesian viewpoint: Different model selection criteria are seen as different priors for the set of moving objects, which

allow one to bias the selection procedure for different purposes.

Index Terms—Dynamic scenes, structure-and-motion, model selection, 3D motion segmentation.
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1 INTRODUCTION

IN the last decade, structure-and-motion recovery from
perspective images as the only source of information has

been extensively studied in the computer vision community.
For the case of static scenes, the problem of fitting a 3D scene
compatible with the images is well understood and essen-
tially solved. There is a vast body of literature, from the
pioneering works of Longuet-Higgins [21], Faugeras [6], and
Hartley [11] to the comprehensive theory now presented in
several excellent textbooks [5], [13], [22]. A key result is that,
given a number of corresponding points, two images are
enough to recover the 3D scene structure and the relative
camera positions up to a projective transformation. Further-
more, it turned out that the type of geometric relation between
corresponding points depends on the scene structure and on
the relative camera motion. Not all scenes and not all relative
camera positions can be appropriately described by the most
general model, the epipolar geometry, encoded algebraically
by the fundamental matrix. There are several cases in which the
fundamental matrix becomes degenerate and must be
replaced by a more restrictive model [5]. If either the camera
motion is a pure rotation, or the scene is planar, then the
relation between the two images is a projectivity, algebrai-
cally expressed as a homography. If the perspective distortion
is small due to small motion or large focal length, it may be
more appropriate to use an affine fundamental matrix or an
affinity. To decide between different types of motions, a
suitable model selection criterion is needed, which balances
goodness-of-fit against model complexity. The first applica-
tion of model selection to two-view motion models is due to

Kanatani [18], who also first recognized that the dimension of
the fitted manifold requires separate treatment [17].

Soon after the main SaM-theory had been established,
researchers turned to the more challenging case of dynamic
scenes, where the segmentation into independently moving
objects and the motion estimation for each object have to be
solved simultaneously. Even in the case of rigidly moving
scene parts, which we will call multibody structure-and-motion
or MSaM, the geometric properties of dynamic scenes turned
out to be nontrivial [2], [10], [30], [32], [45]. Recently, an
excellent extension of algebraic two-view SaM-theory to
dynamic scenes has been presented [39], [40]. The theory is
based on the assumption that each image measurement is
explained by one out of a collection of fundamental matrices
(termed the “multibody fundamental matrix”). The original
method has been extended to the case of multiple homo-
graphies [38], and the same line of research has also been used
to tackle the model selection problem [14]. The underlying
mechanism, “minimum effective dimension,” by definition
aims to reduce the model dimensions as long as the goodness-
of-fit does not drastically deteriorate. For example, it would
prefer to explain a scene as six independently moving planes,
rather than a single moving cube, which is somewhat
counter-intuitive. Also, the purely algebraic approach does
not allow for an outlier model, which, together with the
nonlinear nature of the problem, makes it potentially
vulnerable to gross measurement errors.

A different way to tackle the two-view MSaM problem is
not to extend the geometric model, but instead try to cluster
the points according to their motions. This leads to a chicken-
and-egg problem: The motion models are needed for
clustering, but the clustering is needed to compute the
motion models. Irani and Anandan have proposed an
iterative method to recover a number of homographies
describing the scene [16]: The most dominant homography
is extracted and the points consistent with it are removed,
until the whole scene is explained. An iterative scheme, which
is somewhere between simultaneous and iterative methods,
has been proposed by Tong et al. [34] to extract multiple
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fundamental matrices: Tensor-voting is used to separate the
outliers from those points, which are inliers to any epipolar
geometry, then the single fundamental matrices are extracted
with iterative RANSAC. Torr has proposed an iterative
strategy for a combination of different motion models [35]:
A single motion is estimated, the points consistent with it are
removed from the data, then the next motion is estimated. In
this scheme, each cluster is detected independently, dis-
regarding the presence of other clusters in the data. The
motion models are disjoint and their likelihood can be
directly summed, producing a new model selection criterion.

The method presented here follows a recover-and-select
scheme. In a first step, motion models are instantiated by
Monte-Carlo sampling from the observed correspondences.
Robust, nonparametric statistical analysis of the residuals is
used to individually estimate the scale of the noise for each
model. Note that the method is based on the (scalar) fitting
residuals and, thus, not tied to any particular type of model. It
is possible to use only epipolar geometries, only projectivities,
only affinities, or any combination. In the following, we will
assume that the effects of perspective projection are noticeable
and only consider full fundamental matrices and homogra-
phies, but the framework is general and can be extended to
other motion models, as, for example, shown in [35]. After the
scale of the noise and the number of inliers for this scale have
been found for every putative motion model, the likelihood of
the motion can be computed. Given the likelihood as a
measure for the goodness-of-fit, an optimal set of motion
models can be selected from the candidate set with geometric
model selection. Again, the presented framework is not tied to
any particular model selection criterion and, in fact, we will
argue that it is not possible to devise an all-purpose criterion
for the whole range of possible applications.

There are two original contributions in this paper, one in
each step. First, other than previous applications of geometric
model selection, the presented method estimates the scale of
the noise from the data. Compared with a globally preset
threshold, this improves the capability to discriminate
between different tentative motion models: A global thresh-
old for inlier/outlier separation does not take into account the
shape of the actual residual distributions, and therewith
obscures the statistical properties of the data: If the threshold
is higher than the width of the distribution, then the number
of inliers and the standard deviation are overestimated; if the
threshold is too low, the two quantities are underestimated.
The incorrect estimates will influence model selection
because these quantities are exactly the variables used to
assess the goodness-of-fit. In contrast, the present method
recovers the residual distribution for each tentative motion
and estimates an individual standard deviation from it.

Second, previous iterative approaches to outlier-tolerant
MSaM tacitly regard the candidate motion models as
statistically independent, which is clearly not true since they
may overlap (i.e., there are points which satisfy more than one
motion). Iterative MSaM will assign such points to the motion
detected first, rather than to the one they are most likely to
belong to. This not only influences the classification of certain
points (which can be remedied through postprocessing), but
also the selection of the motions themselves because the
inclusion or exclusion of a certain motion influences the
likelihood of others. An example where iterative MSaM fails
is shown in Fig. 1. This paper demonstrates simultaneous
selection of all motion models. A new formulation for the

posterior likelihood is derived, which properly accounts for
the joint likelihood between overlapping motions. Selecting a
set of motions and finding their respective inliers becomes a
one-shot procedure.

The paper is structured as follows: Section 2 describes how
candidate motion models are blindly estimated from the data.
In Section 3, the principle of geometric model selection is
introduced and, on this grounds, an objective function for
simultaneous selection of multiple motion models is derived.
It is shown how this function can be optimized and how its
behavior can be influenced with a prior which alters the
penalty for model complexity. Section 4 puts these elements
together to obtain a work-flow for MSaM. Experimental
results with both synthetic and real data are presented in
Section 5 and Section 6 gives a short summary and discussion.

1.1 Preliminaries and Notation

This section introduces the notation and recalls some basic
elements of classical structure-and-motion theory, which
are used as a basis for our multibody structure-and-motion
algorithm. Points in the 2D image plane of a camera are
represented by homogeneous 3-vectors p ¼ w½x; y; 1�>. Two
projective cameras see the same 3D point as corresponding
image points p1 and p2. For general camera motion and
scene geometry, the two corresponding points are related
by the epipolar geometry, which is algebraically expressed
by a (3� 3) fundamental matrix, such that

p>2 Fp1 ¼ 0: ð1Þ

The fundamental matrix has seven degrees of freedom and
can be estimated from a set of seven correspondences using
Hartley’s seven-point algorithm [12]. For � 8 correspon-
dences, the eight-point algorithm offers a linear solution for
F, however the optimal estimator is nonlinear. The estima-
tion procedure can be viewed as a geometric fitting
problem: The coordinates of corresponding image pointsepp ¼ ½x1; y1; x2; y2�> are points in a 4D space, and the
fundamental matrix is a 3D manifold, which needs to be
fitted to a number of such points. Since the image point
measurements are corrupted by noise, a correspondence epp
will not lie exactly on the fundamental matrix, but will
differ from it by a residual �. To quantify the residual, we
use the first-order approximation of the geometric error in
the image plane, the so-called “Sampson distance” (but any
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Fig. 1. Iterative versus simultaneous motion recovery. (a) Disparities for
a scene with two planar objects. The camera moves to the left, while the
smaller object in the center moves down and to the right. (b) Result with
iterative MSaM. The homography with the highest individual likelihood is
a false motion, which explains most of the image points. (c) Result with
simultaneous MSaM. The combination of two homographies with lower
standard deviation has a higher likelihood, although their individual
likelihoods are lower. Both examples use the same candidate set.



other geometrically meaningful error-measure could be
used). The Sampson distance � is given by [13]

�2 ¼ ðp>2 Fp1Þ2

ðFp1Þ21 þ ðFp1Þ22 þ ðF>p2Þ21 þ ðF>p2Þ22
; ð2Þ

where ðFp1Þ1 means the first element of the vector Fp1.
If the camera motion between the two views is a pure

rotation around the projection center, or if the 3D points are
all incident to a single plane R, then the correspondences are
constrained to a projectivity: Point p1 can be directly
transferred to point p2 by intersecting the corresponding
ray with the second image plane, respectively by projecting
it onto the scene plane and back-projecting the resulting
scene point. The algebraic relation is a (3� 3) matrix H

called a homography, where

p2 � Hp1: ð3Þ

It has eight degrees of freedom, which can be determined
from � 4 correspondences by reordering the linear relation
Hp1 � p2 ¼ 0 into an equation system Ah ¼ 0, such that h
contains the nine unknown entries of H, and solving for h.
Again, the optimal estimator in nonlinear. In terms of
geometric fitting, the homography is a 2D manifold in the
4D correspondence space, and the Sampson-distance with
respect to a homography is given by

�2 ¼ h>A>ðJJ>Þ�1
Ah; ð4Þ

where J ¼ @ðAhÞ
@ð~ppÞ is the Jacobian of the linear equation system.

From now on, the type of motion shall refer to the algebraic
class of motion model without specifying parameters, e.g., the
epipolar geometry is a type of motion and the projectivity is a
different type of motion. A particular instance of a certain
type, defined by its parameters, will be called a motion or
motion model, so two fundamental matrices corresponding to
different camera setups are different motions of the same
type. The term model shall be reserved for the complete
description of the data consisting of several motions of
possibly different types. Recovering the multibody structure-
and-motion is thus the task to explain the image measure-
ments by fitting a model, which is a collection of motion
models of variable type, where the set of available types is
known, whereas the number of motions is unknown.

2 GENERATING CANDIDATE MODELS

2.1 Sampling

For model selection, a set of candidate motions has to be
generated. This is done with a simple Monte-Carlo proce-
dure: Motion models are randomly instantiated from a
minimal set of correspondences (seven for a fundamental
matrix, four for a homography). Unfortunately, in a scene
with multiple motions, only a comparatively small fraction of
all correspondences belongs to each motion. Applying brute-
force random sampling is already expensive if two motions
are present and becomes intractable for more than two
motions; for example, if we assume that the smallest inlier set
comprises 20 percent of the data (an optimistic guess for three
motions plus some outliers), the standard formula for
RANSAC shows that we would need logð0:99Þ

logð1�0:27Þ ¼ 359; 777
samples to obtain an outlier-free sample with 99 percent
confidence. Even if completely awkward samples are

discarded at an early stage, this figure is an order of
magnitude too high for practical applications.

A solution is to exploit the spatial coherence of points
belonging to the same motion. Except for special cases such as
transparent objects, points belonging to the same rigid object
will be clustered in the image plane, and a local sampling
scheme will therefore dramatically reduce the number of
samples required to find an uncontaminated set. For the
experiments in Section 5, the image planewas subdivided into
three overlapping rows and three overlapping columns, and
sampleswere drawnfrom the entire image, eachcolumn, each
row, and each of the nine regions defined by a row-column
intersection (see Fig. 2). This heuristic subdivision scheme
proved to be a reasonable compromise between local
coherence and global extent, which works well for different
images. To justify the plausibility of the heuristics, we may say
the following: On one hand, one column-row intersection in
the scheme covers 11 percent of the image plane. Hence, if an
independently moving object covers at least 10 percent of the
image and is not very elongated in shape, there will be at least
one region in which the object occupies � 50 percent of the
entire area, which (except for outliers) requires< 600 samples
per region. On the other hand, the larger regions help to obtain
a better distribution of the sampled points on large objects.

2.2 Estimating Standard Deviations

Given a motion model and a number of data points, the scale
of the noise can be estimated without any further knowledge
by applying the TSSE-estimator of Wang and Suter [43]. To
this end, the residuals of all data points with respect to the
motion model have to be computed (we use Sampson-
residuals, see Section 1.1). Mean-shift analysis [4] of the
ordered absolute residuals yields a nonparametric estimate
for their probability density function. Assuming that the
inliers have mean zero, the valley of this function, which is
closest to 0, is a sensible point to separate inliers from outliers.
The bandwidth for the mean-shift algorithm can be selected
automatically from the data with an oversmoothed band-
width selector [42], [44], so that the procedure does not
involve any manually chosen parameters. The procedure is
illustrated in Fig. 3. Further examples are shown in Figs. 6d,
6e, and 6f. Note that the underlying assumptions are very
weak: Rather than assuming any particular distribution, we
only assume that the residuals of the inliers should have zero-
mean and that their distribution is symmetric (since we use
the absolute residuals).

As widely known in the statistical literature, e.g., [26] and
also noticed by computer vision researchers [46], the efficiency
of random sampling methods is poor, i.e., even a motion
constructed from the best uncontaminated random sample
may differ quite strongly from the optimal fit. Therefore, it is
necessary to refine each tentative motion with a least-squares
fit to the inlier points.

Estimating the inlier threshold andvariance of each motion
separately from the data considerably improves the power of
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Fig. 2. Local sampling scheme for tentative motion models. Samples are

drawn from subregions of the image plane to exploit spatial coherence

and reduce the required sample number.



the method, compared with a fixed threshold between inliers
and outliers. When searching for a single motion, a slightly
incorrect threshold is not problematic, while it may impair the
results in the presence of multiple motions. There are two
possible cases: If the threshold is too low, not all inliers are
found; however, the motion is still fitted entirely to inliers,
which will give a good result (in fact, some authors
recommend this strategy to assure that no outliers compro-
mise the fit, e.g., [7]). However, when searching for multiple
motions, the situation is different. If only a subset of the inliers
is found and assigned to the motion, the remaining inliers will
give rise to a second model, leading to overfitting. If, on the
contrary, the threshold is too high, it will still remove a large
part of the outliers, so that, in the presence of a single motion, a
robust least-squares technique such as an M-estimator [15]
can be used to obtain a correct fit. Again, the situation is more
complicated in the presence of multiple motions: If one
motion (either the one with larger support or simply the one
detected first) claims too many data points, it may weaken the
support for a second model, to which the points actually
belong. This can lead to underfitting. The two cases are
schematically illustrated in Fig. 4.

3 MODEL SELECTION

3.1 Principle of Geometric Model Selection

To select the optimal set of motions, a criterion is needed,
which balances the goodness-of-fit against the complexity of
the complete description by penalizing the addition of new
motion models. Both adding more motions and using a more
complex motion type obviously decreases the total fitting
error because degrees of freedom are added which allow the
model to adapt better to the data. The basic idea of model
selection is to counteract this behavior by assigning a cost to

each model type, which grows with the dimension of the
associated manifold and with the number of parameters
required to define it.

There are several criteria in the statistical literature,

starting with Wallace’s minimum message length MML [41].

The first simple and widely used criterion is Akaike’s an

information criterion AIC [1]. It is based on the Kullback-

Leibler divergence and sets the complexity penalty such

that the future residual is minimized. However, it has been

criticized both theoretically (for not being asymptotically

consistent) and empirically (for overfitting) because it does

not account for the number of data points. Methods, which

address this problem, are Schwartz’ Bayes information

criterion BIC [28], an approximation to maximizing like-

lihood that the data has been generated by the model, and

Rissanen’s minimum description length MDL [25], which is an

information theoretic criterion similar to MML, and seeks to

minimize the coding length of the data. Note that each

criterion follows a different, but very restrictive, definition

of optimality (best model for unobserved data, most

probable model, most compact model).
In practice, all criteria have to use approximations, and

in their standard form assume that the dimension of the

fitted manifold is known and only the number of para-

meters of that manifold varies. Since we have to decide

between motions of different dimension, an extension is

needed—otherwise, the one with higher dimension will

always be selected because it is less restrictive (e.g., the

errors of any point cloud with respect to a straight line are

lower or equal to the errors with respect to a point). In

computer vision, this problem was first recognized by

Kanatani, who solved it through an extension of AIC, called

the geometric information criterion GIC1 [17]. GIC selects the

model M which maximizes

GICðMÞ ¼ 2 lnðLÞ � 2ðNtDþKÞ; ð5Þ

where Nt is the total number of correspondences, K is the

number of parameters of the fitted manifold (eight for a

homography, seven for a fundamental matrix), and D is the

dimension of the manifold (two for a homography, three for

a fundamental matrix). L is the likelihood of the model.
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Fig. 4. Influence of wrong thresholds on fitting multiple straight lines.
(a) Correct threshold and fitted lines. (b) Thresholds that are too low
encourage overfitting: Data points missed by the fit give rise to another
line with low residuals. (c) Thresholds that are too large encourage
underfitting: Data points wrongly assigned to the fit weaken the support
for other lines.

Fig. 3. Simultaneous scale estimation and outlier detection with the TSSE-estimator. (a) A set of data points containing several structures and some
outliers, a (manually created) candidate for a straight line fit, and the estimated inlier/outlier boundary. (b) Residuals of all data points with respect to
the line. (c) Ordered absolute residuals and kernel window with automatically selected bandwidth. (d) Detected peak and valley of the distribution.

1. The literature is not consistent. On other occasions, the same criterion
is referred to as G-AIC.



Matsunaga and Kanatani have also extended MDL to a
geometric model selection criterion termed G-MDL [24],
with the slightly different cost function

G-MDLðMÞ ¼ 2 lnðLÞ � ðNtDþKÞ lnð�2Þ; ð6Þ

where � is the noise level. A currently unresolved issue is

that the criterion in its present form is not invariant to

scaling with a scalar due to the dependence on �. A

heuristics has been proposed to remedy the scale-depen-

dence [19]; however, we believe that this is still preliminary,

and further research is needed to clarify the issue.

A similar extension for BIC, based on Bayesian decision

theory, is the core of Torr’s work on selecting motion models.

His criterion is termed geometrically robust information

criterion GRIC2 [35], [37]. GRIC selects the model M which

maximizes

GRICðMÞ ¼ 2 lnðLÞ �NtD lnðRÞ �K lnðRNtÞ; ð7Þ

where R is the dimension of the data (4 for pairs of image

points).
Several authors quite correctly make the point that there is

no “canonical” way to select a model—choosing a model is an
interpretation of the data, and the choice depends on the
model’s purpose [7], [18]. We agree with this view and, in fact,
will show that one can construct a prior which converts one
criterion into the other. In probabilistic terms, different
complexity penalties correspond to different priors, which
encode different expectations about the selected model. For
specific tasks, these expectations may be quite different from
the ones expressed by one of the standard model selection
criteria. We feel that the Bayesian view most naturally fits into
our probabilistic framework and will use GRIC in the rest of
the paper; however, both the likelihood and the formulation
of the optimization problem given in the following are
generic and can just as well be used with GIC or G-MDL,
changing only the penalty terms.

3.2 Computing the Likelihood

In order to compute the likelihood of a model, we first have to
choose suitable probability distributions for the data points.
We try to avoid any unjustified assumptions about the data
and choose the least informative distributions. To find the
least informative distribution consistent with some con-
straints, Shannon has introduced the principle of maximum
entropy [29]. So far, we have assumed that the residuals of
the inliers to a motion have zero-mean and are symmetrically
distributed. One more assumption that we need is that the
distribution is simple enough to discard the higher-order
moments and characterize it by its second moment. In [3], it is
shown that, if we base our estimates only on the first and
second moments of the noise, the least informative distribu-
tion under Shannon’s definition is a Gaussian. LetVi denote a
tentative motion model with standard deviation �i, and let p
be a correspondence, which has the residual �i with respect to
Vi. Then, the likelihood of p is

LðpjViÞ ¼
1

ð�i
ffiffiffiffiffiffi
2�
p
Þ4

exp �
�2
ðiÞ;k

2�2
i

 !
: ð8Þ

If we denote the set of all Ni inliers to Vi by fpk; k 2 Vig and
their residuals with respect to Vi by �ðiÞ;k, then the total
likelihood of Vi is

Li ¼
Y
k2Vi

1

ð�i
ffiffiffiffiffiffi
2�
p
Þ4

exp �
�2ðiÞ;k

2�2
i

 ! !
¼
Y
k2Vi

G
ðiÞ
k : ð9Þ

Although the distinction may seem academic, it should be
noted that this does not say that the noise actually is
Gaussian, but only that it can be described well enough by
its first and second moments.

In the same way, we only make the weakest possible
assumptions about the outliers, which do not conform to any
of the motion models. As expected, the least informative
distribution for a value, for which we only know a lower and
upper bound, is a uniform distribution. Hence, if the image
plane of the first image has the areaAL (measured in the same
unit as the residuals), and the search window within which a
correspondence is searched in the second image has the area
AR, then the likelihood of point p being an outlier is

LðpjAL;ARÞ ¼
1

ALAR
¼ P: ð10Þ

Again, this does not say that the outliers are uniformly
distributed, but only that all we know is the region of the
plane in which they can possibly lie according to the
employed matching procedure. If no spatial constraints are
enforced during matching, then AR is the entire area of the
second image.

Since we want to select a subset of all motions established
previously, the total likelihood has to be split into the
contributions from the single motions. At the same time, we
have to account for the fact that data points may be inliers to
more than one candidate motion: If a data point has a
sufficiently low residual in more than one model, it is not
possible to determine reliably from the data which of the
corresponding distributions it has been sampled from. We
will call the set of points, which have low residuals with
respect to two different motions, the overlap between the two
motions.3 We will from now on assume only pairwise
overlap. This assumption is not strictly correct and causes
overly large overlap penalties, if a point satisfies more than
two motions, but the number of these points is small
compared to those satisfying exactly two motions. The
approximation is necessary to yield a tractable optimization
problem, as explained later in this section.

Points in the overlap should contribute only once to the
overall likelihood since a 3D point cannot lie on more than
one of several physically disjoint objects. It is important to
understand that correct treatment of motion overlap is a
fundamental requirement in a scheme, which uses model
selection to simultaneously recover multiple motions (as
described in Section 3.3). If it is neglected, any motion whose
likelihood outweighs the complexity penalty will increase
the total likelihood and, thus, will be selected. As an extreme
example, imagine the case that two identical motions were
present in the candidate set (overlap 100 percent). Regarded
on their own, both will have the same likelihood and, if this
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2. Note: The same author has called the criterion GBIC in later work [36].
3. Note that this definition of overlap is only based on residuals and does

not look at a point’s position in the image plane.



likelihood is positive, they will both be selected, which
clearly contradicts the desire to minimize the complexity of
the data description—there is no benefit in “explaining the
same point twice.”

Let us first look at two tentative motions, Vi and Vj. If both
are used and they overlap, then a point in the overlap should
only contribute to the motion it fits better.4 Let fpk; k 2 V½ij�g
denote the N½ij� points, which are inliers to both motions Vi
and Vj. Some part V½i� of these points will have lower
likelihood in Vi, the remainder V½j� will have lower likelihood
in Vj. If the two motions were regarded as independent, their
joint likelihood would be Li[j ¼ LiLj. In this expression,
each point of the overlap also makes an unjustified
contribution to the motion, where it has lower likelihood. If
we call the total amount of these unjustified contributions
L½ij�, the correct joint likelihood of the two motions is given
by Li[j ¼ LiLjL½ij� , where

L½ij� ¼
Y
k2V½ij�

min G
ðiÞ
k ; G

ðjÞ
k

� �
¼
Y
k2V½i�

G
ðiÞ
k

Y
k2V½j�

G
ðjÞ
k : ð11Þ

Let the setof all candidatemotions (fundamentalmatricesand

homographies) be C ¼ fV1 . . .VMg. If we select a subset bCC of C,
then bCCwill explain some of the correspondences pk and leave

the remaining H correspondences as outliers. According to

(10), the total likelihood of the outliers is given by L
=Cb¼ PH ,

and the total likelihood of the selected subset is

LCb¼ L=Cb
Q
i2CbLiQ

i;j2CbL½ij� : ð12Þ

To compare different subsets bCC, one can introduce a Boolean
index vector b of length M (the number of candidate
motions in C), with elements ðbi ¼ 1Þ if motion Vi is used
and ðbi ¼ 0Þ otherwise. Then, the log-likelihood is given by

lnðLÞ ¼
X
i2C

bi lnðLiÞð Þ �
X
i2C

X
j2C

bibj ln L½ij�
� �� �

þH lnðP Þ:

ð13Þ

In this expression, we can substitute the likelihoods with (9)
and (11). Furthermore, we can express the number of
outliers as the difference between the total number of
points Nt and the number of inliers (again, assuming only
pairwise overlap):

H lnðP Þ ¼ Nt �
X
i2C

biNi þ
X
i2C

X
j2C

bibjN½ij�

 !
lnðP Þ: ð14Þ

The constant term Nt lnðP Þ will not influence the optimiza-
tion and can be dropped (by a slight abuse of notation, the
new quantity is still called L). Furthermore, we abbreviate
the normalized sum of squared errors of a motion

1

�2
i

X
k2Vi

�2ðiÞ;k ¼ Ei ð15Þ

and the normalized sums of squared errors in the overlap

between two motions

1

�2
i

X
k2V½i�

�2
ðiÞ;k ¼ E½i�;

1

�2
j

X
k2V½j�

�2ðjÞ;k ¼ E½j� ð16Þ

so that

lnðLiÞ ¼ 2Ni lnð2��2
i Þ þ

1

2
Ei

lnðL½ij�Þ ¼ 2ðN½i� lnð2��2
i Þ þN½j� lnð2��2

j ÞÞ þ
1

2
ðE½i� þ E½j�Þ:

ð17Þ

Substituting these expressions in (13), multiplying by 2,

setting �1 ¼ �2 lnðP Þ � 4 lnð2�Þ, and reordering yields

2 lnðLÞ ¼
X
i2C
ðbiðNi�1 � 4Ni lnð�2

i Þ � EiÞÞ�

�
X
i2C

X
j2C

�
bibj
�
N½ij��1 � 4N½i� lnð�2

i Þ

� E½i� � 4N½j� lnð�2
j Þ � E½j�

��
:

ð18Þ

In this form, the log-likelihood is only a function of the

index vector b. All other quantities on the right side are

known parameters of the candidate motion models.

3.3 Maximizing the Criterion

Previously, model selection criteria have either been used to

select one manifold of varying dimension at a time, such as

in [17], [35], or to fit an unknown number of manifolds with

the same dimension at once, such as in [20]. In that work,

Leonardis et al. showed that one can formulate a tractable

optimization problem for an unknown number of motions,

if the contributions of different motions to the total

likelihood can be separated. This is the reason why we

assume only pairwise overlap.
With expression (18) for the likelihood, the GRIC (7) for a

collection of motions bCCðbÞ can be written as a quadratic

expression of the index vector:

GRICðbÞ ¼ b>Qb; ð19Þ

where Q is a symmetric (M �M) matrix [20]. Let the

constants �2 ¼ Nt lnð4Þ and �3 ¼ lnð4NtÞ. Then, the diagonal

elements of Q are

qii ¼ Ni�1 � 4Ni lnð�2
i Þ � Ei � �2Di � �3Ki: ð20Þ

The off-diagonal elements, which handle the overlap

between different tentative motions, are

qij ¼ qji ¼

� 1

2
N½ij��1 � 4N½i� lnð�2

i Þ � E½i� � 4N½j� lnð�2
j Þ � E½j�

� �
:

ð21Þ

Intuitively, the cost function (19)

. favors motions which significantly reduce the
number of outliers (large Ni),

. favors motions with small standard deviation and
small fitting errors (low �i and low Ei),
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4. Strictly speaking, this is not correct: Each point should contribute to
the distribution it actually has been sampled from. Since there is no way to
determine this in the case of overlapping distributions, we have to use the
best guess.



. tries to keep the number of motions low (by
penalizing each used motion / Ki), which is the
usual complexity penalty for model selection.

. tries to keep the dimension of the motion low (by
penalizing the motion / Di), which is the extension
to geometric model selection.

Note that no parameters have to be tuned in (20) and (21).
Maximizing expression (19) over b is a combinatorial

problem for which a global optimum can only be found
through exhaustive search. In operations research, Taboo-
search [9] is a standard method for approximate solution of
such problems. In spite of its simplicity and an obvious
similarity to human searching behavior, it has rarely been
used in computer vision, with the notable exception of [31]. In
this work, Stricker and Leonardis advocate the use of Taboo-
search for exactly the type of problem we have to solve and
also report that it outperforms simulated annealing methods.

A detailed description of the method is beyond the scope of
this paper, but we will briefly sketch the principle since it does
not seem to be widely known in the computer vision
community. Let us begin with a greedy search procedure:
We start from an arbitrary set of motions (e.g., the empty set).
The two possible elementary moves in a binary problem are to
either switch on an additional motion or to switch off one of
the currently used motions. The greedy solution iteratively
searches the move with the highest benefit until no further
reduction of the cost is possible. Taboo-search extends this
method by not stopping at the first local minimum. Instead,
the search continues, but recent moves are remembered in a
“short-term memory,” which is constantly updated. Undoing
any of the moves in the memory is illegal (“taboo”) unless it
reduces the cost beyond the best current minimum. This
ensures that the search departs far enough from a local
minimum. Furthermore, the frequency of each move is
remembered and, if all feasible moves are illegal, the least
frequent one is chosen in order to diversify the search as much
as possible without getting stuck. The best of the detected
local minima is retained and, if it cannot be improved further
in a preset number of iterations, the search is terminated.

As with most metaheuristics for hard optimization
problems, the computational complexity and solution
quality of Taboo-search depend on the implementation,
and no provable guarantees can be given, except that the
optimum will always be at least as good as the greedy result
for the same search neighborhood. We have tested our
implementation on a large number of random quadratic
Boolean problems of varying size. Empirically, its average
complexity is OðM2:5Þ, with variations between different
runs generally below 10 percent.

3.4 Constraints

For any real problem an upper bound for the allowable
residual �max for a single point measurement is known—it is
the distance above which a measurement is considered an
“outlier” rather than a “noisy inlier.” In the presence of a
single motion, the maximum allowable residual would be a
natural upper bound for the standard deviation � of the
motion model, since 1

N

P
�2k � maxð�2kÞ. A motion model with

higher standard deviation is meaningless because it is at least
partly based on points, whose residuals are too large to be
inliers. As an extreme example, a motion with a standard

deviation greater than half the image size will always explain
all measurements within 	�. A constraint is needed to make
sure that such meaningless motion models cannot be selected.

To account for outliers and pseudo-outliers on other
motion models, which tend to blur the distinction between
inliers and outlier, it is advisable to use a more conservative
upper bound t�max; t � 2. In order to formally add this
constraint to the probabilistic formulation of the optimiza-
tion problem, one would have to redefine the likelihood (9)
of a candidate motion Vi as

Li ¼
Q

k2Vi
1

ð�i
ffiffiffiffi
2�
p
Þ4 exp � �2ðiÞ;k

2�2
i

� �� �
if �i � t�max

0 else;

8<: ð22Þ

which will give motions with too high �i an infinitely high
goodness-of-fit penalty. Since the constraint is independent of
the other terms of the objective function, using (22) is
equivalent to removing motion models with �i > t�max from
the candidate set prior to selection. The latter speeds up the
optimization.

Note the difference to methods which threshold the
residuals at the fitting stage (e.g., basic RANSAC): These
methods determine the inlier set by discarding points with
large residuals and, in this way, always obtain a fit with
sufficiently low �, but the boundary is arbitrary and may not
be apparent in the corresponding probability density
function. On the contrary, TSSE bases the partitioning into
inliers and outliers on probability densities and, by
definition, finds a boundary which is observable in the
pdf. The threshold on � is then used to discard the entire fit,
rather than only some of its points.

3.5 Model Selection and Priors

As already stated earlier, choosing a model is an interpretation
of the data, and the best solution may vary depending on the
task at hand. Specifically, none of the given criteria gives
satisfactory results if the task is to segment small relative
motions. The issue is related to the definition of what is a
“satisfactory” result: The purpose is not merely a compact
description with low errors, but the discrimination of
motions, which can be explained well enough with a single
motion model. So, in some sense, we are aiming for an overfit.
To bias model selection in the desired way, we only have to
decrease the cost for a motion model, and the selection
mechanism will automatically choose more motions with
lower residuals and, in this way, separate similar motions. In
fact, the reason why established model-scoring methods
often fail in practice is that they are based on general
definitions of optimality, which may not be suitable for the
application. On the contrary, a Bayesian view of the problem
allows one to impose a problem-specific definition of
optimality: A prior on the set of motion models can be used
to smoothly move the emphasis from greater sensitivity to
greater compactness of the description, including the
penalties of GIC, G-MDL, and GRIC as special cases.

In a Bayesian framework, information not manifest in the
data is introduced in the form of the prior distribution. The
penalty terms in the criterion express the belief that a more
complicated description of the data is less likely. For the
example of separating small motions, the prior shall mitigate
this, saying that it is “not that much less likely.” The prior
must also be proportional to the total number of matches Nt;
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otherwise, its influence will decrease ! 0 as the number of
matches increases.5 A simple prior with these properties is

LP ¼
1

SP

Y
i2bCC U

BiNt ; Bi ¼
H : 1
F : 3 lnð4ÞNtþ7 lnð4NtÞ

2 lnð4ÞNtþ8 lnð4NtÞ :

	
ð23Þ

SP is the combinatorial sum over all possible
Q
UBiNt ,

which normalizes the total probability to 1, but it need not
be known because it is constant and can be dropped. The
factor Bi is introduced to preserve the ratio between the
total penalties for a fundamental matrix and a homography,
so that the prior does not bias the selection of the model
type. The constant U determines the strength of the bias.
Being part of the prior, it cannot be determined within the
framework, but is an as yet arbitrary parameter, the choice
of which requires external knowledge. Given that the model
cost should be decreased, but remain > 0, the theoretical
range is ð1 < U < 42Þ. Writing �4 ¼ Nt lnðUÞ, the prior
changes the diagonal elements of Q to

qii ¼ Ni�1 � 4Ni lnð�2
i Þ �Ei � �2Di � �3Ki þBi�4: ð24Þ

As desired, the penalties for adding motion models have
been decreased, treating all motions in an equal way
independent of the total number, and preserving the ratio
between model type penalties. In Section 5, the effect of this
prior is shown on a practical example.

The prior likelihood (23) is only the simplest representa-
tive of a more general prior

LPr ¼
1

SPr

Y
i2bCC U

fðNtÞ; ð25Þ

where fðNtÞ is some function of Nt. The general form no
longer treats all models equally, and it also allows one to
influence the likelihood ratio between different motion
types. For example, setting

fðNtÞ ¼
H : 2ðlnð4Þ � 2ÞNt þ 8 lnð4NtÞ � 16
F : 3ðlnð4Þ � 2ÞNt þ 7 lnð4NtÞ � 14

	
ð26Þ

results in a prior, which converts GRIC into GIC. In
statistical theory, it has been pointed out that different
model scoring methods can be seen as different priors [8].
We would like to emphasize that this is also true for
geometric model selection, and that the established meth-
ods belong to a family defined by the function fðNtÞ. In
practice, it may be useful to go beyond the established
penalty terms and design new scoring methods by chan-
ging the function f . However, it remains to be investigated
how this could be done in a theoretically justified way. We
do not recommend the use of arbitrary priors without clear
interpretation, which are just the infamous “damping
factors” in Bayesian disguise.

4 THE COMPLETE MSAM ALGORITHM

In the previous sections, the ingredients for a robust
MSaM method have been developed. Putting them
together yields a complete work-flow:

1. Matching. Obtain a set of corresponding points
between the two images with a suitable algorithm.
This step is not the topic of the present paper. For the
experiments in this paper, we used manually mea-
sured correspondences, point tracks obtained with the
publicly available implementation of the KLT-tracker
[33], and wide-baseline matching with the maximally
stable extremal regions (MSERs) of Matas et al. [23].

2. Sampling. Randomly sample a sufficient number of
candidates for each considered model type, with the
local scheme described in Section 2. If we assume an
inlier fraction of at least 50 percent in one of the
subregions, an easy calculation shows that we need to
sample � 600 fundamental matrices and � 80 homo-
graphies per subregion to obtain an uncontaminated
sample with a probability > 99 percent.

3. Data analysis. Estimate the standard deviation and
the inlier set of each candidate with TSSE; as
described in Section 2.2, refine the candidates with
a least-squares fit and discard all candidates which
do not satisfy the �max-constraint in (22).

4. Optimization. The result of the previous steps is a set
of M candidate models (fundamental matrices and
homographies). Each candidate consists of a known
model type and estimates for the parameters, inlier
count, standard deviation, and residuals. With these
elements, build the matrix Q using (20) and maximize
the objective function (19) with Taboo-search.

5. Result. The solution vector bbb directly gives the
multibody structure-and-motion: The candidate mod-
els for which ðbi ¼ 1Þ are the ones which optimally
explain the data, their respective inlier sets are the
(nonexclusive) segmentation of the correspondences
into different 3D motions, and the data points which
are not in any of those inlier sets are the outliers.

5 EXPERIMENTS

5.1 Simulations with Synthetic Data

Experiments with synthetic data were used to empirically
assess the proposed method. The experiments assume a pair
of images with 500� 500 pixels. For the first experiment,
spatially clustered clouds of 50 random points per model
were generated on 1-3 randomly chosen motion models and
perturbed with 0.5 pixel i.i.d. Gaussian noise. The amount of
motion was chosen at random in such a way that all image
points come to lie within the image boundaries, point clouds
from different motions do not overlap, and extreme motions
in depth are avoided (by limiting the expansion factor of a
point cloud to 0:5 < E < 2). Fifty outliers were added from a
uniform distribution over the two image planes. The
algorithm was applied to 100 such random data sets. To
judge the performance of the selection, the number and the
types of recovered motions are recorded; to judge the
accuracy of the results, the number of inliers per motion
and its standard deviation are used. The results of the
experiment are given in Table 1. As expected, the estimates
for the motions’ standard deviations grow as more motions
are added, since pseudo-outliers from other motion models
blur the borders between the distributions. In some cases, one
out of three motions was missed. This happens when two of
the random motions are very similar and have a large overlap,
so that the cost for assigning the remaining points of the
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5. GRIC, as well as GIC and G-MDL, can only be evaluated for given Nt.
Hence, the problem is to fit a set of motions to a known number Nt of a priori
unknown correspondences, and Nt is indeed part of the prior knowledge.



weaker one to the outliers is lower than the cost for an
additional motion. This effect is inevitable in the presence of
outliers: Allowing for unexplained points inherently reduces
the ability to discriminate similar motions. The effect could be
mitigated by a prior, which increases the cost of outliers—at
the expense of spurious models in case of many outliers. All
detected motions were assigned the correct motion model.

In a second set of experiments, the sensitivity to noise was
assessed. For each test, two random motions were created
with 50 inliers each and augmented with 50 outliers. The
amount of noise added to the inliers was increased from 0.05
to 2.5 pixels (the minimal noise of 0.05 is required for correct
bandwidth-selection during the mean-shift procedure).
Thirty tests were run at each noise level. Since the ability to
separate the two inlier distributions depends on the amount
of outliers, the whole test was also repeated with 25 outliers.
The results are shown in Fig. 5. Up to a noise level of

1.25 pixels (0.25 percent of the image size), the performance is
stable, then it rapidly breaks down: The inlier distributions
become increasingly wider and flatter and are no longer
separable. The results with fewer outliers are slightly better,
but support the conclusion that the method can handle up to
� 0:25% noise.

The third experiment again used two random motions
with noise of 0.5 pixels, but the number of outliers was
gradually increased. As expected, the limiting factor is the
Monte-Carlo sampling. As the inlier fraction decreases, more
and more samples are needed to obtain any correct
candidates for the selection process. When 75 outliers
(� 40%) are reached, which do not belong to any motion,
the method gradually breaks down. It can be seen, from the
estimated standard deviations and inlier numbers, that more
outliers do not seriously impair scale estimation and model
selection. Motions are simply missed, if no correct candidate
is generated during sampling. In accordance with the theory,
fundamental matrices are missed more often because of the
larger required minimum sample. The experiment was also
repeated with a higher sample number of 25,000/6,250. The
results are slightly better, but on the whole, they confirm that
the method can cope well with outliers, as long as the number
of outliers is not significantly larger than the number of inliers
per model. The results are summarized in Fig. 5.

5.2 Experiments with Real Image Pairs

We have also tested the proposed method on real image
pairs. The first example contains three independently
moving objects. On each of the three regions, 50 correspon-
dences were measured manually, in order to have an easily
accessible ground truth segmentation. Fifty spurious
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TABLE 1
Three-Dimensional Segmentation of Random Data

Left to right: True number of motions, percentage of true motions
detected in 100 runs, percentage of true motions which were assigned
the correct model, average number of inliers (ground truth: 50), average
standard deviation (ground truth: 0.5).

Fig. 5. Three-dimensional segmentation with synthetic data. Top row: Results at different noise levels. Bottom row: Results with different amount of

outliers. See text for details. (a) estimated #motions, (b) estimated noise, (c) estimated #inliers, (d) estimated #motions, (e) estimated noise, and

(f) estimated #inliers.



matches were added at apparent intersections, repetitive
structures, etc. Of 8,000 initial candidates, 17 fundamental
matrices and 33 homographies survived the constraint
(�i < 4 pixels) and were passed on to the model selection
stage, which correctly retained one fundamental matrix for
the pile of books and two homographies for the screen and
the journal. Table 2 shows the obtained clustering of the
matches. Ninety-nine percent of all inliers were assigned to
the correct motion.

We have not disambiguated points which satisfy more
than one motion model. A common strategy is to assign
each point to the motion where it has the smaller (normal-
ized) residual and, thus, the higher likelihood. However,
this is theoretically questionable: The point is an inlier to
both distributions and other information is necessary if it
has to be disambiguated. Arguably, it is better (and closer to

the human visual system) to assign it to the motion model
satisfied by most of its neighbors.

To demonstrate the importance of properly treating
model overlap, the experiment has been repeated without
correcting the joint likelihood of overlapping models (i.e.,
qij ¼ 0 for all i 6¼ j). The result is a data description with
eight fundamental matrices and 33 homographies, includ-
ing the correct ones.

For the next experiment, an image pair was recorded and
interest points were obtained automatically using the MSER
detector. Each region was approximately normalized by
diagonalizing its covariance matrix and removing the scale
anisotropy, then the regions were matched with normalized
cross-correlation, yielding 307 matches, including 50 out-
liers. The centers of gravity of each matching pair were used
as correspondences. The proposed method correctly de-
tected two fundamental matrices and one homography for
the three moving objects in the scene. Ninety-six percent of
the matches were assigned to the correct motion.

Further experiments where carried out with real images.
The “shoes” sequence consists of 40 frames showing the feet of
a moving person. There are three motions for the left foot, the
right foot, and the (static) background. With the KLT-tracker,
72 points were automatically detected and tracked through
the sequence, including two outliers due to tracking errors.
The method was applied to the first and last image of the
sequenceandcorrectlysegmentedthedataintothreemotions.
A fundamental matrix was selected for the right shoe, and
homographies were selected for the left shoe (where the
tracked points are almost coplanar) and for the background
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Fig. 6. Three-dimensional segmentation results for “desk” image pair. (a) Disparities of corresponding points overlayed on left image. Different colors
denote different motions, cyan are outliers. (b) and (c) Obtained segmentation overlayed on images. Circles denote points on fundamental matrices,
squares are points on homographies. Point classified as outliers are not displayed. (d), (e), and (f) Absolute residuals (gray, dashed), probability density
function (black, continuous), and separation between inliers and outliers for the selected motion models. Probability densities are on a relative scale and
do not integrate to 1. (a) Disparities, (b) left image, (c) right image, (d) pdf for screen motion, (e) pdf for journal motion, and (f) pdf for books motion.

TABLE 2
Three-Dimensional Segmentation Results for “Desk” Image Pair

The outliers are a rejection class for points not assigned to any motion.
See text for details.



(which did not move at all). Ninety-four percent of the points
were assigned to the correct motion. The two outliers could
not be found since both accidentally satisfy the fundamental
matrix. Again, additional information, such as spatial con-
sistency, would be required to detect these cases [27].

Another image sequence was taken from the digitized
1946 movie “Transportation” (available from http://
www.archive.org). The sequence contains two motions,
the truck driving along the road and the background, which
has a small motion due to camera jitter. Three hundred and
five points were tracked through the sequence with the
KLT-tracker, of which 32 are outliers. The method correctly
recovered a fundamental matrix for the truck and a
homography for the background motion; 97 percent of the
points where assigned to the correct motion. Results for
these experiments are depicted in Fig. 7.

5.3 Nonuniform Priors

To demonstrate the effect of the prior given at the end of
Section 3, we have applied our method to the first and last
image of the “car-truck-box” sequence also used by Vidal et al.
[39], [40]. The data set contains three different motions with
44, 48, and 81 matches, respectively. Two of the motions are
small and have ambiguous interpretations. Theoretically,
both the car and the truck are nonplanar objects with general
motion. However, the average Sampson residual when fitting
a fundamental matrix to the matches on the car and the truck

together is only sF;ct ¼ 0:15 pixels, while the average Sampson
residual for the box is sF;b ¼ 0:53 pixels. Moreover, the two
motions are so small that the average Sampson error for
fitting homographies is sH;c ¼ 0:13 pixels for the car and
sH;t ¼ 0:44 pixels for the truck, compared to sF;c ¼ 0:07 and
sF;t ¼ 0:11 for fundamental matrices.

Fifty outliers were added by sampling spurious matches
from a uniform distribution. Then, the method was applied
to the data, using the prior from (24) with different values
for U . The results are depicted in Fig. 8. With a uniform
prior U ¼ 1, two fundamental matrices are recovered: one
for the box, and one for the truck and car together, since,
even so, the fitting error is lower than for the box due to the
degenerate configuration. With U ¼ ½5 . . . 6�, the motions of
the car and the truck are separated and assigned two
homographies. With U ¼ ½7 . . . 12�, the truck is assigned a
fundamental matrix instead and, with U ¼ 13, each motion
is modeled by a fundamental matrix. Decreasing the model
cost even further produces spurious models. The example
illustrates nicely that there are multiple plausible inter-
pretations of the same data, and a model selection criterion
cannot be designed generically, but only for a certain task.

6 CONCLUDING REMARKS

We have presented a scheme for robust multibody
structure-and-motion in the presence of different motion
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Fig. 7. Three-dimensional segmentation results for “box-book-mag,” “shoes,” and “truck” image pairs. Left: Disparities of corresponding points
overlayed on left image. Different colors denote the ground truth segmentation, cyan are outliers. Center, right: Segmentation overlayed on images.
Circles denote points on fundamental matrices, squares are points on homographies.



models, noise of unknown standard deviation, and outliers.
The method simultaneously recovers all present motions
and needs no thresholds, except for an upper bound of the
allowable measurement error. An important limitation is
that the method is based on a set of candidate motions
generated with random sampling. It therefore relies on a
heuristic local scheme to keep the number of required
samples in a manageable order of magnitude. Even so, the
method can handle only a small number of motions.

A further requirement is that the numbers of correspon-
dences on different motions are of the same order of
magnitude. This restriction is a direct and inevitable conse-
quence of the fact that the method is robust to outliers. An
outlier model is effectively a rejection class for points not
compatible with any motion model. Since the number of
motionsneededto explainthe data isunknown, therehas to be
some complexity penalty to avoid overfitting (even if this
penalty is not imposed explicitly as complexity cost, but
implicitly, for example, in the form of a clustering threshold).
Hence, if thenumberofpointssupportingsomemotionmodel
MS is onlyasmall fraction of the totalnumber ofpoints, which
includes the support for the larger motion ML, there must
come a stage where it is cheaper to assign those points to the
outliers than to add MS to the model. In the presence of
nonzero measurement noise, allowing for outliers inherently
introduces a limit for the smallest identifiable motion.

The ideas underlying the presented method, including
the limitations, are generic for robustly fitting multiple
manifolds and not limited to structure-and-motion. In fact,
among the potential applications, multibody structure-and-
motion is on the challenging end of the scale because of the
need to fit 3D manifolds and to decide between manifolds
of varying dimension.

Finally, we reiterate that the task to be solved determines
what a suitable model is. For example, we have shown that a
compact description with sufficiently small errors on one
hand and a fine-grained detection of all separable motions on
the other hand requires different priors. In more general
terms: A model selection problem cannot be solved with a
generic criterion which is independent of the task. Rather, it
has been shown that different model selection criteria are
members of a larger family of priors on the model complexity
and that, within this family, a problem-specific criterion can
be designed, which incorporates all prior knowledge. The
design and use of such priors has been briefly discussed in an

ad-hoc manner, but further research is needed to establish a

theoretically sound way of designing or learning priors for

geometric model selection.

ACKNOWLEDGMENTS

The authors would like to thank Hanzi Wang for help with the

TSSE-estimator, Horst Bischof and Ales Leonardis for Taboo-

search code, Jiri Matas for the MSER detector, and Rene Vidal

for providing the “car-truck-box” data. They are also grateful

to the anonymous reviewers for constructive comments

which helped to improve the paper. This work has been

carried out within the Institute for Vision Systems Engineer-

ing funded by the Faculty of Engineering, Monash University.

REFERENCES

[1] H. Akaike, “Information Theory and an Extension of the
Maximum Likelihood Principle,” Proc. Second Int’l Symp. Informa-
tion Theory, pp. 267-281, 1973.

[2] S. Avidan and A. Shashua, “Trajectory Triangulation: 3D
Reconstruction of Moving Points from a Monocular Image
Sequence,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 22, no. 4, pp. 348-357, Apr. 2000.

[3] G.L. Bretthorst, “An Introduction to Model Selection Using
Probability Theory as Logic,” Maximum Entropy and Bayesian
Methods, G.R. Heidbreder, ed., pp. 1-42, Kluwer Academic
Publishers, 1996.

[4] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach
toward Feature Space Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603-619, May 2002.

[5] O. Faugeras, Q.-T. Luong, and T. Papadopoulo, The Geometry of
Multiple Images. MIT Press, 2001.

[6] O.D. Faugeras, “What Can Be Seen in 3D with an Uncalibrated
Stereo Rig?” Proc. Second European Conf. Computer Vision, pp. 563-
578, 1992.

[7] D.A. Forsyth and J. Ponce, Computer Vision—A Modern Approach.
Prentice Hall, Inc., 2003.

[8] E.I. George and D.P. Foster, “Calibration and Empirical Bayes
Variable Selection,” Biometrika, vol. 87, no. 4, pp. 731-747, 2000.

[9] F. Glover and M. Laguna, “Tabu Search,” Modern Heuristic
Techniques for Combinatorial Problems, 1993.

[10] M. Han and T. Kanade, “Reconstruction of Scenes with Multiple
Linearly Moving Objects,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, pp. 542-549, 2000.

[11] R. Hartley, “Estimation of Relative Camera Positions for Uncali-
brated Cameras,” Proc. Second European Conf. Computer Vision,
pp. 579-587, 1992.

[12] R. Hartley, “Projective Reconstruction and Invariants from Multi-
ple Images,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 16, pp. 1036-1041, 1994.

994 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 6, JUNE 2006

Fig. 8. Three-dimensional segmentation of “cars” image pair. Left image and segmentation results with priors of different strength. Colors denote the

obtained clusters, circles denote points on fundamental matrices, squares are points on homographies. Cyan points are outliers. Left to right: uniform

prior (U ¼ 1), weak prior (U ¼ 7), strong prior (U ¼ 13). Details are given in the text.



[13] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, 2000.

[14] K. Huang, Y. Ma, and R. Vidal, “Minimum Effective Dimension
for Mixtures of Subspaces: A Robust GPCA Algorithm and Its
Applications,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 631-638, 2004.

[15] P.J. Huber, Robust Statistics. John Wiley and Sons, 1981.
[16] M. Irani and P. Anandan, “A Unified Approach to Moving Object

Detection in 2D and 3D Scenes,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 6, pp. 577-589, June 1998.

[17] K. Kanatani, Statistical Optimation for Geometric Computation:
Theorie and Practice. Elsevier, 1996.

[18] K. Kanatani, “Geometric Information Criterion for Model Selec-
tion,” Int’l J. Computer Vision, vol. 26, no. 3, pp. 171-189, 1998.

[19] K. Kanatani, “Uncertainty Modeling and Model Selection for
Geometric Inference,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 26, no. 10, pp. 1307-1319, 2004.

[20] A. Leonardis, A. Gupta, and R. Bajcsy, “Segmentation of Range
Images as the Search for Geometric Parametric Models,” Int’l J.
Computer Vision, vol. 14, no. 1, pp. 253-277, 1995.

[21] C. Longuet-Higgins, “A Computer Algorithm for Reconstructing a
Scene from Two Projections,” Nature, vol. 293, pp. 133-135, 1981.

[22] Y. Ma, J. Kosecka, S. Soatto, and S. Sastry, An Invitation to 3-D
Vision. Springer Verlag, 2003.

[23] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide
Baseline Stereo from Maximally Stable Extremal Regions,” Proc.
13th British Machine Vision Conf., vol. 1, pp. 384-393, 2002.

[24] C. Matsunaga and K. Kanatani, “Calibration of a Moving Camera
Using a Planer Pattern: Optimal Computation, Reliability Evalua-
tion and Stabilization by Model Selection,” Proc. Sixth European
Conf. Computer Vision, vol. 2, 2000.

[25] J. Rissanen, “Modeling by Shortest Data Description,” Automatica,
vol. 14, pp. 465-471, 1978.

[26] P.J. Rousseeuw and A.M. Leroy, Robust Regression and Outlier
Detection. John Wiley and Sons, 1987.

[27] K. Schindler, “Spatially Consistent 3D Motion Segmentation,”
Proc. Int’l IEEE Conf. Image Processing, 2005.

[28] G. Schwartz, “Estimating the Dimension of a Model,” Annals of
Statistics, vol. 6, pp. 497-511, 1978.

[29] C.E. Shannon, “A Mathematical Theory of Communication,” Bell
Systems Technical J., vol. 27, pp. 379-423, 1948.

[30] A. Shashua and A. Levin, “Multiframe Infinitesimal Motion
Model for the Reconstruction of (Dynamic) Scenes with Multiple
Linearly Moving Objects,” Proc. Eighth Int’l Conf. Computer Vision,
pp. 592-599, 2001.

[31] M. Stricker and A. Leonardis, “ExSel++: A General Framework to
Extract Parametric Models,” Proc. Computer Analysis of Images and
Patterns, pp. 90-97, 1995.

[32] P. Sturm, “Structure and Motion of Dynamic Scenes—The Case of
Points Moving in Planes,” Proc. Seventh European Conf. Computer
Vision, pp. 867-882, 2002.

[33] C. Tomasi and T. Kanade, “Detection and Tracking of Point
Features,” Technical Report CMU-CS-91-132, Carnegie Mellon
Univ., 1991.

[34] W.-S. Tong, C.-K. Tang, and G. Medioni, “Simultaneous Two-
View Epipolar Geometry Estimation and Motion Segmentation by
4D Tensor Voting,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 26, no. 9, pp. 1167-1184, Sept. 2004.

[35] P.H.S. Torr, “Geometric Motion Segmentation and Model Selec-
tion,” Philosophical Trans. Royal Soc. London A, vol. 356, no. 1740,
pp. 1321-1340, 1998.

[36] P.H.S. Torr, “Model Selection for Structure and Motion Recovery
from Multiple Images,” Technical Report MSR-TR-99-16, Micro-
soft Research, 1999.

[37] P.H.S. Torr, “Bayesian Model Estimation and Selection for
Epipolar Geometry and Generic Manifold Fitting,” Int’l J.
Computer Vision, vol. 50, no. 1, pp. 35-61, 2002.

[38] R. Vidal and Y. Ma, “A Unified Algebraic Approach to 2-D and
3-D Motion Segmentation,” Proc. Eighth European Conf. Computer
Vision, pp. 1-15, 2004.

[39] R. Vidal and S. Sastry, “Optimal Segmentation of Dynamic Scenes
from Two Perspective Views,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2003.

[40] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “Segmentation of
Dynamic Scenes from the Multibody Fundamental Matrix,” Proc.
ECCV Workshop Visual Modeling of Dynamic Scenes, 2002.

[41] C.S. Wallace and D.M. Boulton, “An Information Measure for
Classification,” Computer J., vol. 11, no. 2, pp. 185-194, 1968.

[42] M.P. Wand and M. Jones, Kernel Smoothing. Chapman and Hall,
1995.

[43] H. Wang and D. Suter, “MDPE: A Very Robust Estimator for
Model Fitting and Range Image Segmentation,” Int’l J. Computer
Vision, vol. 59, no. 2, pp. 139-166, 2004.

[44] H. Wang and D. Suter, “Robust Fitting by Adaptive-Scale
Residual Consensus,” Proc. Eighth European Conf. Computer Vision,
pp. 107-118, 2004.

[45] L. Wolf and A. Shashua, “Two-Body Segmentation from Two
Perspective Views,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, pp. 263-270, 2001.

[46] Z. Zhang, “Parameter Estimation Techniques: A Tutorial with
Application to Conic Fitting,” Image and Vision Computing, vol. 15,
no. 1, pp. 59-76, 1997.

Konrad Schindler received the Diplomingen-
ieur degree in photogrammetry from the Vienna
University of Technology, Austria, in 1999, and
the PhD degree from the Graz University of
Technology, Austria, in 2003. He worked as a
photogrammetric engineer in private industry
and was a research assistant in the Computer
Graphics and Vision Department of the Graz
University of Technology. He is currently a
postdoctoral research assistant in the Digital

Perception Lab of Monash University in Melbourne, Australia. His
research interests include the analysis and reconstruction of dynamic
scenes, as well as feature detection and object recognition. He is a
member of the IEEE.

David Suter received the BSc degree in applied
mathematics and physics from Flinders Univer-
sity, Adelaide, Australia, in 1977 and the
PhD degree in computer vision from LaTrobe
University, Melbourne, Australia, in 1991. He is
an associate professor in the Department of
Electrical and Computer Systems Engineering at
Monash University, Melbourne, Australia. He
served as general cochair of the 2002 Asian
Conference on Computer Vision and has been

cochair of the Statistical Methods in Computer Vision workshops (2002
Copenhagen and 2004 Prague). He currently serves on the editorial
board of the International Journal of Computer Vision and of the
International Journal of Image and Graphics. His main research interest
is motion estimation from images and visual reconstruction. He is a
senior member of the IEEE and the IEEE Computer Society and vice
president of the Australian Pattern Recognition Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SCHINDLER AND SUTER: TWO-VIEW MULTIBODY STRUCTURE-AND-MOTION WITH OUTLIERS THROUGH MODEL SELECTION 995



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


